Neuroprotection induced by dexpramipexole delays disease progression in a mouse model of progressive multiple sclerosis

右旋普拉克索诱导的神经保护作用可延缓进行性多发性硬化症小鼠模型的病情进展

阅读:7
作者:Daniela Buonvicino, Giuseppe Ranieri, Sara Pratesi, Elisabetta Gerace, Mirko Muzzi, Daniele Guasti, Lorenzo Tofani, Alberto Chiarugi

Background and purpose

Drugs able to counteract progressive multiple sclerosis (MS) represent a largely unmet therapeutic need. Even though the pathogenesis of disease evolution is still obscure, accumulating evidence indicates that mitochondrial dysfunction plays a causative role in neurodegeneration and axonopathy in progressive MS patients. Here, we investigated the effects of dexpramipexole, a compound with a good safety profile in humans and able to sustain mitochondria functioning and energy production, in a mouse model of progressive MS. Experimental approach: Female non-obese diabetic mice were immunized with MOG35-55 . Functional, immune and neuropathological parameters were analysed during disease evolution in animals treated or not with dexpramipexole. The compound's effects on bioenergetics and neuroprotection were also evaluated in vitro. Key

Purpose

Drugs able to counteract progressive multiple sclerosis (MS) represent a largely unmet therapeutic need. Even though the pathogenesis of disease evolution is still obscure, accumulating evidence indicates that mitochondrial dysfunction plays a causative role in neurodegeneration and axonopathy in progressive MS patients. Here, we investigated the effects of dexpramipexole, a compound with a good safety profile in humans and able to sustain mitochondria functioning and energy production, in a mouse model of progressive MS. Experimental approach: Female non-obese diabetic mice were immunized with MOG35-55 . Functional, immune and neuropathological parameters were analysed during disease evolution in animals treated or not with dexpramipexole. The compound's effects on bioenergetics and neuroprotection were also evaluated in vitro. Key

Results

We found that oral treatment with dexpramipexole at a dose consistent with that well tolerated in humans delayed disability progression, extended survival, counteracted reduction of spinal cord mitochondrial DNA content and reduced spinal cord axonal loss of mice. Accordingly, the drug sustained in vitro bioenergetics of mouse optic nerve and dorsal root ganglia and counteracted neurodegeneration of organotypic mouse cortical cultures exposed to the adenosine triphosphate-depleting agents oligomycin or veratridine. Dexpramipexole, however, was unable to affect the adaptive and innate immune responses both in vivo and in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。