Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT

TWIST 的敲低通过抑制 MDR1 和 EMT 增强化疗药物在阿霉素耐药 HepG2 细胞中的细胞毒性

阅读:9
作者:Rong Li, Changli Wu, Hongying Liang, Yinghai Zhao, Chunyan Lin, Xiujuan Zhang, Caiguo Ye

Abstract

The transcription factor twist family bHLH transcription factor 1 (TWIST), which is a member of the basic helix-loop-helix class of proteins, is known to induce epithelial-mesenchymal transition (EMT) and promote cancer metastasis. TWIST has previously been reported to be associated with multidrug resistance (MDR), since its depletion increases drug sensitivity. Although these previous studies have established a strong association between EMT and MDR, the molecular mechanism remains obscure. The present study demonstrated that TWIST protein expression was elevated in liver cancer, and was positively correlated with multidrug resistance protein 1 (MDR1) expression. Conversely, MDR1 was negatively correlated with E‑cadherin expression in liver cancer samples. In addition, the present study indicated that doxorubicin-resistant HepG2 (R‑HepG2) cells acquired an EMT phenotype. TWIST was also more highly expressed in R‑HepG2 cells compared with in parental HepG2 cells. Knockdown of TWIST increased the sensitivity of R‑HepG2 cells to 5-fluroracil, cisplatin and doxorubicin through a reduction in MDR1 expression and drug efflux ability. Furthermore, knockdown of TWIST in R‑HepG2 cells inhibited the migratory ability of cells and suppressed the EMT phenotype. These findings demonstrated that targeting TWIST may be considered a novel strategy to overcome drug resistance in liver cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。