Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer's disease

褪黑激素通过 miR-504-3p 和 CDK5 轴改善阿尔茨海默病中的 tau 相关病理

阅读:4
作者:Dongmei Chen #, Guihua Lan #, Ruomeng Li, Yingxue Mei, Xindong Shui, Xi Gu, Long Wang, Tao Zhang, Chen-Ling Gan, Yongfang Xia, Li Hu, Yuan Tian, Mi Zhang, Tae Ho Lee

Background

Intracellular accumulation of the microtubule-associated protein tau and its hyperphosphorylated forms is a key neuropathological feature of Alzheimer's disease (AD). Melatonin has been shown to prevent tau hyperphosphorylation in cellular and animal models. However, the molecular mechanisms by which melatonin attenuates tau hyperphosphorylation and tau-related pathologies are not fully understood.

Conclusions

Our results suggest for the first time that melatonin alleviates tau-related pathologies through upregulation of miR-504-3p expression by targeting the p39/CDK5 axis and provide novel insights into AD treatment strategies.

Methods

Immunofluorescence, immunoblotting analysis and thioflavin-S staining were employed to examine the effects of early and late treatment of melatonin on tau-related pathology in hTau mice, in which nonmutated human tau is overexpressed on a mouse tau knockout background. High-throughput microRNA (miRNA) sequencing, quantitative RT-PCR, luciferase reporter assay and immunoblotting analysis were performed to determine the molecular mechanism.

Results

We found that both early and late treatment of melatonin efficiently decreased the phosphorylation of soluble and insoluble tau at sites related to AD. Moreover, melatonin significantly reduced the number of neurofibrillary tangles (NFTs) and attenuated neuronal loss in the cortex and hippocampus. Furthermore, using miRNA microarray analysis, we found that miR-504-3p expression was upregulated by melatonin in the hTau mice. The administration of miR-504-3p mimics dramatically decreased tau phosphorylation by targeting p39, an activator of the well-known tau kinase cyclin-dependent kinase 5 (CDK5). Compared with miR-504-3p mimics alone, co-treatment with miR-504-3p mimics and p39 failed to reduce tau hyperphosphorylation. Conclusions: Our results suggest for the first time that melatonin alleviates tau-related pathologies through upregulation of miR-504-3p expression by targeting the p39/CDK5 axis and provide novel insights into AD treatment strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。