Depletion of LAMP3 enhances PKA-mediated VASP phosphorylation to suppress invasion and metastasis in esophageal squamous cell carcinoma

LAMP3 的缺失增强 PKA 介导的 VASP 磷酸化从而抑制食管鳞状细胞癌的侵袭和转移

阅读:5
作者:Furong Huang, Gang Ma, Xuantong Zhou, Xiaolin Zhu, Xiao Yu, Fang Ding, Xiufeng Cao, Zhihua Liu

Abstract

Metastasis is still a major cause of cancer-related mortality. Lysosome-associated membrane protein 3 (LAMP3) has been implicated in the invasiveness and metastasis of multiple cancer types; however, the underlying mechanisms are unclear. In this study, we found that LAMP3 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and that this increased expression positively correlated with lymph node metastasis. Depletion of LAMP3 dramatically suppressed the motility of ESCC cells in vitro and experimental pulmonary and lymph node metastasis in vivo. Importantly, knockdown of LAMP3 increased the level of phosphorylated VASP(Ser239), which attenuated the invasive and metastatic capability of ESCC cells. We identified that cAMP-dependent protein kinase A (PKA) was responsible for the phosphorylation of VASP at Ser239. Consistently, silencing of PKA regulatory subunits diminished Ser239 phosphorylation on VASP and restored the motility capacity of LAMP3-depleted ESCC cells. In conclusion, we uncovered a previously unknown role of LAMP3 in promoting cellular motility and metastasis in ESCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。