Tricin attenuates the progression of LPS-induced severe pneumonia in bronchial epithelial cells by regulating AKT and MAPK signaling pathways

麦角素通过调节 AKT 和 MAPK 信号通路减轻支气管上皮细胞中 LPS 诱导的重症肺炎的进展

阅读:5
作者:Fan Yang, Wenming Liu

Background

Pneumonia is a continuous and widespread disease with higher incidence, the effects of it on human life can be fearful. Tricin has been demonstrated to take part in the progression and development of diseases. However, the function of Tricin and its related regulatory pathways remain unclear. This study was planned to investigate the effects of Tricin on severe pneumonia.

Conclusion

Our findings revealed that Tricin attenuated the progression of LPS induced severe pneumonia through modulating AKT and MAPK signaling pathways. This discovery might afford one novel sight for the treatment of severe pneumonia.

Methods

The cell viability was detected through CCK-8 assay. The TNF-α, IL-1β and IL-6 levels were assessed through ELISA and RT-qPCR. The levels of MDA, SOD and GSH were tested through corresponding commercial kits. The protein expressions were examined through western blot.

Results

In our study, the lipopolysaccharide (LPS) was firstly used to stimulate cell model for severe pneumonia. We discovered that Tricin had no toxic effects on BEAS-2B cells and the decreased cell viability induced by LPS was relieved by a dose-dependent Tricin treatment. Additionally, through ELISA and RT-qPCR, it was uncovered that Tricin reduced the LPS-induced inflammation through regulating TNF-α, IL-1β and IL-6. Furthermore, Tricin relieved LPS-induced oxidative stress through reducing MDA level and enhancing SOD and GSH levels. Finally, it was demonstrated that Tricin retarded LPS-activated AKT and MAPK pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。