M1 macrophage-membrane-cloaked paclitaxel/β-elemene nanoparticles targeting cervical cancer for enhanced therapy

M1巨噬细胞膜包裹紫杉醇/β-榄香烯纳米粒子靶向宫颈癌增强治疗

阅读:7
作者:Yi Wang, Jiakun Wang, Chengbo Huang, Yang Ding, Leyao Lv, Yuhao Zhu, Nuo Chen, Yingyi Zhao, Qing Yao, Shengjie Zhou, Mei Chen, Qibing Zhu, Lifeng Li, Fengyun Chen

Abstract

Cervical cancer is a leading cause of cancer-related mortality in females worldwide, necessitating urgent solutions for effective treatment. Paclitaxel (PTX), a natural diterpene alkaloid compound, has the ability to inhibit mitosis and induce programmed apoptosis in tumor cells. However, its toxicity and drug resistance limit its efficacy in certain cervical cancer patients. β-elemene (β-ELE) can reverse multidrug resistance by inhibiting ATP-binding cassette transporters, thereby enhancing chemotherapy drug retention. Therefore, we propose a combination therapy using PTX/β-ELE to improve chemotherapy sensitivity. To enhance targeted drug delivery, we developed M1-macrophage-membrane-coated nanoparticles (M1@PLGA/PTX/β-ELE) for co-delivery of PTX&β-ELE. Through both in vitro and in vivo cervical cancer models, we demonstrated that M1@PLGA/PTX/β-ELE effectively suppressed tumor progression and polarization of tumor-associated macrophages. Furthermore, H&E staining confirmed the high therapeutic biosafety of M1@PLGA/PTX/β-ELE as there was no significant damage observed in major organs throughout the entire therapeutic process. Overall, this study presents a targeted biomimetic nanoplatform and combinatorial strategy that synergistically enhances chemosensitivity in malignant tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。