Mechanochemical extraction of edible proteins from moor grass

利用机械化学方法从荒草中提取可食用蛋白质

阅读:5
作者:Olusegun Abayomi Olalere, Fatma Guler, Christopher J Chuck, Hannah S Leese, Bernardo Castro-Dominguez

Abstract

Extracting edible nutrient-rich food fractions from unconventional sources, such as grass, could play a pivotal role in ensuring food security, bolstering economic prosperity, combating climate change, and enhancing overall quality of life. Current extraction techniques rely heavily on harsh chemicals, which not only degrade nutrients but can also substantially add to the cost of the process and make downstream separation challenging. In this study, we harnessed a mechanochemical process, liquid-assisted grinding (LAG) with and without Na2CO3, termed sodium carbonate assisted grinding (SAG), to extract the protein fraction from moor grass. These techniques were compared to the conventional alkaline extraction (AE) method. Unlike alkaline extraction, which solubilized over 70% of the material, the mechanochemical approach using Na2CO3 solubilized only 55% of the grass while still extracting the vast majority of the protein in the original grass feedstock. The protein fractions obtained from the SAG process had a similar amino acid profile to the core feedstock but also contained distinct characteristics over the other methods of extraction. FT-IR analysis, for example, identified the presence of an amide III band in the protein fractions obtained from the SAG process, indicating unique structural features that contribute to improved dispersibility, gelation properties, and water-in-water stability. Furthermore, the extracted moor grass protein contained a higher proportion of glutamic acid in comparison to other amino acids in the protein, which indicates a savoury umami (meaty) characteristic to the protein fraction. The protein extracted via SAG also exhibited good heat stability (139-214 °C), rendering them potentially suitable for baking applications. Additionally, coupling Na2CO3 with liquid assisted grinding not only removed the need for organic solvents and conventional heating but also reduced solvent consumption by 83%, compared with the typical alkaline extraction, thus simplifying the downstream processes necessary to produce food fractions. This study demonstrates the potential significance of mechanochemical extraction processes in unlocking nutrients from unconventional resources like grass, to produce the next generation of sustainable food ingredients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。