Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway

DL-丁基苯酞通过调节 Keap1/Nrf2/HO-1 信号通路抑制鱼藤酮诱导的小胶质细胞氧化应激

阅读:4
作者:Rixin Luo, Lihong Zhu, Zhaohao Zeng, Ruiyi Zhou, Jiawei Zhang, Shu Xiao, Wei Bi

Abstract

Activated microglia are a source of superoxide which often increases oxidative stress in the brain microenvironment, increase production of reactive oxygen species (ROS) and directly or indirectly lead to dopaminergic neuronal death in the substantia nigra. Thus superoxide contributes to the pathogenesis of Parkinson's disease (PD). Evidence suggests that mitochondria are the main source of ROS, which cause oxidative stress in cells. Levels of ROS are thus associated with the function of the mitochondrial complex. Therefore, protecting the mitochondrial function of microglia is important for the treatment of PD. Dl-butylphthalide (NBP), a compound isolated from Chinese celery seeds, has been approved by the China Food and Drug Administration for the treatment of acute ischemic stroke. Recently, NBP demonstrated therapeutic potential for PD. However, the mechanism underlying its neuroprotective effect remains unclear. The present study aimed to investigate the effect of NBP on rotenone-induced oxidative stress in microglia and its underlying mechanisms. The results demonstrated that NBP treatment significantly increased mitochondrial membrane potential and decreased ROS level in rotenone-induced microglia. Western blot analysis showed that NBP treatment promoted entry of nuclear respiratory factor-2 (Nrf2) into the nucleus, increased heme oxygenase-1 (HO-1) expression and decreased the level of the Nrf2 inhibitory protein, Kelch-like ECH-associated protein 1. Overall, the findings indicated that NBP inhibited rotenone-induced microglial oxidative stress via the Keap1/Nrf2/HO-1 pathway, suggesting that NBP may serve as a novel agent for the treatment of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。