IRS-2/Akt/GSK-3 β/Nrf2 Pathway Contributes to the Protective Effects of Chikusetsu Saponin IVa against Lipotoxicity

IRS-2/Akt/GSK-3 β/Nrf2 通路有助于竹节皂苷 IVa 对抗脂毒性

阅读:6
作者:Lei Wang, Jialin Duan, Na Jia, Meiyou Liu, Shanshan Cao, Yan Weng, Wei Zhang, Jinyi Cao, Ruili Li, Jia Cui, Jingwen Wang

Abstract

Chronic hyperlipidemia leads to pancreatic β-cell apoptosis and dysfunction through inducing oxidative stress. Chikusetsu saponin IVa (CHS) showed antioxidant and antidiabetic properties in our previous studies; however, its protective effects against lipotoxicity-induced β-cell oxidative stress and dysfunction are not clear. This study was designed to investigate the effects of CHS against lipotoxicity-induced β-cell injuries and its possible mechanism involved. High-fat (HF) diet and a low dose of streptozotocin- (STZ-) induced type 2 diabetes mellitus (T2DM) model in vivo and βTC3 cells subjected to 0.5 mM palmitate (PA) to imitate the lipotoxic model in vitro were performed. Pancreatic functions, ROS, and antioxidant protein measurements were performed to evaluate the effects of CHS on cell injuries. Protein expression levels were measured by Western blotting. Furthermore, siRNA-targeted Nrf2, PI3K/Akt inhibitor (LY294002), or GSK-3β inhibitor (LiCl) was used to investigate the crosstalk relationships between proteins. As the results showed, CHS treatment inhibited apoptosis, promoted insulin release, and reduced oxidative stress. CHS treatment significantly increased the expression of Nrf2 in the cytoplasm and nuclear protein. The antioxidative and benefit effects of CHS were inhibited by siNrf2. The phosphorylation of IRS-2, PI3K, Akt, and GSK-3β was markedly increased by CHS which were inhibited by PA. In addition, inhibition of PI3K/Akt or GSK-3β with specific inhibitors dramatically abrogated the protective effects of CHS, revealing that the IRS-2/Akt/GSK-3β signaling axis was involved in the protective effects of CHS. These results demonstrate that CHS protected βTC3 cells against PA-induced oxidative stress and cell dysfunction through Nrf2 by the IRS-2/Akt/GSK-3β-mediated pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。