ATR kinase activity promotes antibody class switch recombination in B cells through cell cycle regulation without suppressing DSB resection and microhomology usage

ATR 激酶活性通过细胞周期调节促进 B 细胞中的抗体类别转换重组,而不会抑制 DSB 切除和微同源性使用

阅读:5
作者:Xikui Sun, Meiling Liu, Jingning Bai, Jiejie Xu, Chengming Zhu, Junchao Dong, Chun Chen

Abstract

Class switch recombination (CSR) changes the effector functions of antibodies and is carried out by classical and alternative nonhomologous end joining (c-NHEJ and A-EJ) of repetitive switch (S) region double-strand breaks (DSBs). The master DNA damage response (DDR) kinase ataxia-telangiectasia mutated (ATM) is critical for CSR in part by suppressing S region DSB resection. However, whether another related DDR kinase ATM- and Rad3-related (ATR) plays similar role in CSR remains elusive. In this study, we investigated the requirement for ATR kinase activity on CSR in both c-NHEJ competent and deficient B cell lines with high-throughput sequencing of S-S junctions. We found that ATR kinase inhibition efficiently blocked both c-NHEJ- and A-EJ-mediated CSR without affecting germline transcription and activation-induced cytosine deaminase expression. In contrast to ATM, ATR does not suppress S region DSB resection and microhomology usage. In addition, ATR kinase inhibition did not affect Cas9-generated DSB end joining by either c-NHEJ and A-EJ. ATR kinase-inhibited stimulated B cells proliferate much slower than controls and exhibited altered cell cycle profile with increased G1 and G2/M phase cells. In summary, our data revealed a role for ATR in promoting both c-NHEJ- and A-EJ-mediated CSR through regulating cell proliferation upon damage without negatively influencing DSB end-joining features.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。