Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response

脂联素通过增强神经保护性小胶质细胞反应来改善低灌注认知缺陷

阅读:4
作者:Wanying Miao, Liyuan Jiang, Fei Xu, Junxuan Lyu, Xiaoyan Jiang, Maxine He, Yaan Liu, Tuo Yang, Rehana K Leak, R Anne Stetler, Jun Chen, Xiaoming Hu

Abstract

Vascular cognitive impairment and dementia (VaD) is the second most common type of dementia caused by chronic vascular hypoperfusion. Adiponectin, one of the cytokines produced by adipocytes (adipocytokine), plays a role in CNS pathologies, but its specific function in VaD is unknown. Here, transcriptomic analyses on human brain tissues showed downregulation of adipocytokine/PPAR signaling in VaD patients, with prominent upregulation of pro-inflammatory responses. Using the murine asymmetric common carotid artery stenosis (ACAS) model, we discovered that the adiponectin/PPARγ axis is essential in reducing chronic hypoperfusion-induced cognitive deficits via modulation of microglial function. Adiponectin levels in the plasma increased early after VaD induction, but decreased in the cerebrospinal fluid in the late phase of VaD. Adiponectin deficiency worsened hippocampus-dependent cognitive deficits, exacerbated neuroinflammation and microglia/macrophage activation, and amplified neuronal loss, but these behavioral and histological outcomes were rescued by adipoRon, a small molecule agonist of the adiponectin receptors. AdipoRon boosted PPARγ expression and inhibited pro-inflammatory microglial responses in vitro, thereby protecting ischemic neurons in primary microglia-neuron cocultures. Microglia/macrophage-specific knockout of PPARγ abolished the neuroprotective effects of adipoRon. Collectively, these data confirm the importance of adiponectin/PPARγ signaling in maintaining cognitive functions in chronic hypoperfusion-induced dementia, and thus provide novel therapeutic targets for VaD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。