Solar light driven enhanced in photocatalytic activity of novel Gd incorporated ZnO/SnO2 heterogeneous nanocomposites

太阳光增强新型 Gd 掺杂 ZnO/SnO2 异质纳米复合材料的光催化活性

阅读:9
作者:Sagar Panwar, Vinod Kumar, L P Purohit

Abstract

The Gd-doped ZnO/SnO2 nanocomposites with various atomic percentages (0, 0.5, 0.8, and 1.2 at%) of gadolinium (coded as GdZS0, GdZS1, GdZS2, and GdZS3) was synthesis via the sol-gel method and explored for photodegradation against dye solutions exposing solar light irradiation. The synthesized nanocomposites were characterized employing the XRD, FTIR, FE-SEM, Raman spectroscopy, BET analysis and UV-Vis spectrophotometer. The FE-SEM results indicated that the formation of nanoparticles to nanoflowers covered with Gd ions was observed with an increased doping concentration of Gd. The optical bandgap was evaluated and found in the range of 3.21-3.27 eV for GdZS nanocomposites. The GdZS nano-photocatalysts were investigated against the degradation of different organic dyes and GdZS3 shows the highest degradation efficiencies of 99.3%, 98.3% and 99.4% towards MO, MB and RhB dyes, respectively at neutral pH in aqueous media. Before and after photodegradation. Biological oxygen demand and chemical oxygen demand tests to make estimations of mineralization. The investigations are very promising for the degradation process in rare earth doped metal oxide nanocomposites. A plausible photodegradation mechanism of synthesized nanocomposites under investigation has also been proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。