Nanoparticles Interfere with Chemotaxis: An Example of Nanoparticles as Molecular "Knockouts" at the Cellular Level

纳米粒子干扰趋化性:纳米粒子作为细胞水平上的分子“敲除”的一个例子

阅读:5
作者:Xi Zhang, Priscila Falagan-Lotsch, Catherine J Murphy

Abstract

Engineered colloidal nanoparticles show great promise in biomedical applications. While much of the work of assessing nanoparticle impact on living systems has been focused on the direct interactions of nanoparticles with cells/organisms, indirect effects via the extracellular matrix have been observed and may provide deeper insight into nanoparticle fate and effects in living systems. In particular, the large surface area of colloidal nanoparticles may sequester molecules from the biological milieu, make these molecules less bioavailable, and therefore function indirectly as "molecular knockouts" to exert effects at the cellular level and beyond. In this paper, the hypothesis that molecules that control cellular behavior (in this case, chemoattract molecules that promote migration of a human monocytic cell line, THP-1) will be less bioavailable in the presence of appropriately functionalized nanoparticles, and therefore the cellular behavior will be altered, was investigated. Three-dimensional chemotaxis assays for the characterization and comparison of THP-1 cell migration upon exposure to a gradient of monocyte chemoattractant protein-1 (MCP-1), with and without gold nanoparticles with four different surface chemistries, were performed. By time-lapse microscopy, characteristic parameters for chemotaxis, along with velocity and directionality of the cells, were quantified. Anionic poly(sodium 4-styrenesulfonate)-coated gold nanoparticles were found to significantly reduce THP-1 chemotaxis. Enzyme-linked immunosorbent assay results show adsorption of MCP-1 on the poly(sodium 4-styrenesulfonate)-coated gold nanoparticle surface, supporting the hypothesis that adsorption of chemoattractants to nanoparticle surfaces interferes with chemotaxis. Free anionic sulfonated polyelectrolytes also interfered with cell migrational behavior, showing that nanoparticles can also act as carriers of chemotactic-interfering molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。