Aldehyde dehydrogenase activity enriches for proximal airway basal stem cells and promotes their proliferation

乙醛脱氢酶活性富集近端气道基底干细胞并促进其增殖

阅读:5
作者:Ahmed E Hegab, Vi Luan Ha, Bharti Bisht, Daphne O Darmawan, Aik T Ooi, Kelvin Xi Zhang, Manash K Paul, Yeon Sun Kim, Jennifer L Gilbert, Yasser S Attiga, Jackelyn A Alva-Ornelas, Derek W Nickerson, Brigitte N Gomperts

Abstract

Both basal and submucosal gland (SMG) duct stem cells of the airway epithelium are capable of sphere formation in the in vitro sphere assay, although the efficiency at which this occurs is very low. We sought to improve this efficiency of sphere formation by identifying subpopulations of airway basal stem cells (ABSC) and SMG duct cells based on their aldehyde dehydrogenase (ALDH) activity. ALDH(hi) ABSCs and SMG duct cells were highly enriched for the population of cells that could make spheres, while the co-culture of ALDH(hi) differentiated cells with the ALDH(hi) ABSCs increased their sphere-forming efficiency. Specific ALDH agonists and antagonists were used to show that airway specific ALDH isozymes are important for ABSC proliferation. Pathway analysis of gene expression profiling of ALDH(hi) and ALDH(lo) ABSCs revealed a significant upregulation of the arachidonic acid (AA) metabolism pathway in ALDH(hi) ABSCs. We confirmed the importance of this pathway in the metabolism of proliferating ALDH(hi) ABSCs using bioenergetics studies as well as agonists and antagonists of the AA pathway. These studies could lead to the development of novel strategies for altering ABSC proliferation in the airway epithelium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。