Intranasal administration of lipopolysaccharide reverses chronic stress-induced depression-like behavior in mice by microglial stimulation

鼻腔内注射脂多糖可通过刺激小胶质细胞逆转小鼠慢性应激引起的抑郁样行为

阅读:7
作者:Chao Huang, Ting Ye, Bingran Chen, Zhuo Chen, Ying Ye, Huijun Liu

Abstract

We recently reported that intraperitoneal injection of a low dose of lipopolysaccharide (LPS) reversed depression-like behavior in mice induced by chronic stress by stimulating microglia in the hippocampus. In this study, we found that a single intranasal administration of LPS at a dose of 5 or 10 μg/mouse, but not at a dose of 1 μg/mouse, rapidly reversed depression-like behavior in mice stimulated with chronic unpredictable stress (CUS). In the time-dependent experiment, a single intranasal administration of LPS (10 μg/mouse) reversed CUS-induced depression-like behavior in mice 5 and 8 h but not 3 h after drug administration. The antidepressant effect of a single intranasal LPS administration (10 μg/mouse) lasted at least 10 days and disappeared 14 days after administration. Fourteen days after the first intranasal LPS administration, a second intranasal LPS administration (10 μg/mouse) still reversed the increased immobility time in TST and FST and the decreased sucrose uptake in SPT in CUS mice, which again exhibited depression-like behaviors 5 h after LPS administration. The antidepressant effect of intranasal LPS administration was dependent on microglial activation, because inhibition of microglia by pretreatment with minocycline (40 mg/kg) or depletion of microglia by pretreatment with PLX3397 (290 mg/kg) prevented the antidepressant effect of intranasal LPS administration in CUS mice. These results suggest that stimulation of the microglia-mediated innate immune response by intranasal administration of LPS can produce rapid and sustained antidepressant effects in animals under chronic stress conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。