High glucose enhances the aggressiveness of lung adenocarcinoma via activating epidermal growth factor receptor/signal transducer and activator of transcription 3 pathways

高糖通过激活表皮生长因子受体/信号转导和转录激活因子3通路增强肺腺癌的侵袭性

阅读:5
作者:Supannika Sorin, Yubin Zhou, Kanyarat Thithuan, Kullanat Khawkhiaw, Fuchun Zeng, Tummarat Ruangpratyakul, Surang Chomphoo, Wunchana Seubwai, Sopit Wongkham, Charupong Saengboonmee

Abstract

Epidemiological studies revealed hyperglycemia as a poor prognostic factor for lung adenocarcinoma with unclear molecular mechanisms. The present study thus aimed to investigate the effects of high glucose on the progression of lung adenocarcinoma and its underlying mechanisms. Lung adenocarcinoma cell lines, A549 and RERF-LC-KJ, were cultured in 5.6 mM glucose (normal glucose; NG) or 25 mM glucose (high glucose; HG) resembling euglycemia and hyperglycemia. Cells were examined for proliferation by the MTT assay, and migration-invasion using Transwell. The expressions of signaling proteins in epidermal growth factor receptor (EGFR) pathways and their downstream targets were investigated using Western blots. The effects of diabetes mellitus (DM) and hyperglycemia on lung adenocarcinoma growth in vivo were studied in streptozotocin-induced diabetic BALB/cAJcl-Nu/Nu mice and their nondiabetic counterparts. High glucose significantly promoted proliferation, migration, and invasion of lung adenocarcinoma cells compared with those in normal glucose (P<.05). Western blot analyses showed the increased ratio of pEGFR/EGFR in cells cultured in high glucose and subsequently activated the signal transducer and activator of transcription 3 (STAT3). Epithelial-mesenchymal (EMT) markers were also altered in lung adenocarcinoma cells in high glucose conditions, corresponding with increased migration and invasion abilities. Erlotinib, an EGFR inhibitor, significantly reversed high glucose-induced aggressive phenotypes confirming high glucose-enhancing lung adenocarcinoma progression via the activation of EGFR. DM and hyperglycemia also promoted the growth of lung adenocarcinoma xenografts in vivo in which erlotinib significantly suppressed the growth of tumors (P<.05) suggesting EGFR inhibitor as an effective therapeutic agent for lung adenocarcinoma with DM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。