Muscle p62 stimulates the expression of antioxidant proteins alleviating cancer cachexia

肌肉 p62 刺激抗氧化蛋白的表达,缓解癌症恶病质

阅读:7
作者:Mami Yamada, Eiji Warabi, Hisashi Oishi, Vitor A Lira, Mitsuharu Okutsu

Abstract

Oxidative stress plays an important role in skeletal muscle atrophy during cancer cachexia, and more glycolytic muscles are preferentially affected. Sequestosome1/SQSTM1 (i.e., p62), particularly when phosphorylated at Ser 349 (Ser 351 in mice), competitively binds to the Kelch-like ECH-associated protein 1 (Keap1) activating Nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 then stimulates the transcription of antioxidant/electrophile-responsive elements in target genes. However, a potential role for p62 in the protection of muscle wasting in cachexia remains to be determined. Here, using the well-established cachexia-inducing model of Lewis Lung Carcinoma (LLC) in mice we demonstrate higher expression of antioxidant proteins (i.e., NQO1, HO-1, GSTM1, CuZnSOD, MnSOD, and EcSOD) in the more oxidative and cachexia resistant soleus muscle than in the more glycolytic and cachexia prone extensor digitorum longus muscle. This was accompanied by higher p62 (total and phosphorylated) and nuclear Nrf2 levels in the soleus, which were paralleled by higher expression of proteins known to either phosphorylate or promote p62 phosphorylation (i.e., NBR1, CK1, PKCδ, and TAK1). Muscle-specific p62 gain-of-function (i.e., in p62 mTg mice) activated Nrf2 nuclear translocation and increased the expression of multiple antioxidant proteins (i.e., CuZnSOD, MnSOD, EcSOD, NQO1, and GSTM1) in glycolytic muscles. Interestingly, skeletal muscle Nrf2 haplodeficiency blunted the increases of most of these proteins (i.e., CuZnSOD, EcSOD, and NQO1) suggesting that muscle p62 stimulates antioxidant protein expression also via additional, yet to be determined mechanisms. Of note, p62 gain-of-function mitigated glycolytic muscle wasting in LLC-affected mice. Collectively, our findings identify skeletal muscle p62 as a potential therapeutic target for cancer cachexia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。