Boosting Charge Utilization in Self-Powered Photodetector for Real-Time High-Throughput Ultraviolet Communication

提高自供电光电探测器的电荷利用率,实现实时高吞吐量紫外通信

阅读:13
作者:Tian Ouyang, Xuan Zhao, Xiaochen Xun, Fangfang Gao, Bin Zhao, Shuxin Bi, Qi Li, Qingliang Liao, Yue Zhang

Abstract

Ultraviolet (UV) communication is a cutting-edge technology in communication battlefields, and self-powered photodetectors as their optical receivers hold great potential. However, suboptimal charge utilization has largely limited the further performance enhancement of self-powered photodetectors for high-throughput communication application. Herein, a self-powered Ti3 C2 Tx -hybrid poly(3,4 ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS)/ZnO (TPZ) photodetector is designed, which aims to boost charge utilization for desirable applications. The device takes advantage of photothermal effect to intensify pyro-photoelectric effect as well as the increased conductivity of the PEDOT:PSS, which significantly facilitated charge separation, accelerated charge transport, and suppressed interface charge recombination. Consequently, the self-powered TPZ photodetector exhibits superior comprehensive performance with high responsivity of 12.3 mA W-1 and fast response time of 62.2 µs, together with outstanding reversible and stable cyclic operation. Furthermore, the TPZ photodetector has been successfully applied in an integrated UV communication system as the self-powered optical receiver capable of real-time high-throughput information transmission with ASCII code under 9600 baud rate. This work provides the design insight of highly performing self-powered photodetectors to achieve high-efficiency optical communication in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。