FABP5 is a critical regulator of methionine- and estrogen-induced SREBP-1c gene expression in bovine mammary epithelial cells

FABP5 是牛乳腺上皮细胞中蛋氨酸和雌激素诱导的 SREBP-1c 基因表达的关键调节因子

阅读:6
作者:Ping Li, Mengmeng Yu, Chengjian Zhou, Hao Qi, Xuepeng Wen, Xiaoming Hou, Meng Li, Xuejun Gao

Abstract

The intracellular fatty acid-binding proteins (FABPs) are a well-conserved family that function as lipid chaperones. Ongoing studies are focused on identification of the mechanistic complexity and vast biological diversity of different isoforms of FABPs. However, the molecular mechanism of FABP5 in the regulation of milk fat synthesis in the mammary gland of dairy cows is still largely unknown. Here, we report that FABP5 acts as a critical regulator of terol response element-binding protein-1c (SREBP-1c) gene expression induced by methionine (Met) and estrogen (E2) in bovine mammary epithelial cells (BMECs). We observed that the expression of FABP5 was markedly higher in dairy cow mammary tissue during the lactating period than the puberty period and the dry period. FABP5 is located in the cytoplasm, and Met and E2 significantly increase the protein levels of FABP5 in BMECs. Using gene function study approaches, we revealed that FABP5 positively regulates SREBP-1c gene expression and promotes milk fat synthesis. We confirmed that FABP5 is required for Met- and E2-induced SREBP-1c gene expression and milk fat synthesis. We further uncovered that fatty acids are needed for FABP5-mediated SREBP-1c gene expression. Thus, our study demonstrates that FABP5 is a critical regulator of Met- and E2-induced SREBP-1c gene expression leading to milk fat synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。