Investigating the effects of chronic perinatal alcohol and combined nicotine and alcohol exposure on dopaminergic and non-dopaminergic neurons in the VTA

研究围产期慢性酒精暴露以及尼古丁和酒精联合暴露对中脑腹侧被盖区多巴胺能和非多巴胺能神经元的影响

阅读:4
作者:Tina Kazemi, Shuyan Huang, Naze G Avci, Yasemin M Akay, Metin Akay

Abstract

The ventral tegmental area (VTA) is the origin of dopaminergic neurons and the dopamine (DA) reward pathway. This pathway has been widely studied in addiction and drug reinforcement studies and is believed to be the central processing component of the reward circuit. In this study, we used a well-established rat model to expose mother dams to alcohol, nicotine-alcohol, and saline perinatally. DA and non-DA neurons collected from the VTA of the rat pups were used to study expression profiles of miRNAs and mRNAs. miRNA pathway interactions, putative miRNA-mRNA target pairs, and downstream modulated biological pathways were analyzed. In the DA neurons, 4607 genes were differentially upregulated and 4682 were differentially downregulated following nicotine-alcohol exposure. However, in the non-DA neurons, only 543 genes were differentially upregulated and 506 were differentially downregulated. Cell proliferation, differentiation, and survival pathways were enriched after the treatments. Specifically, in the PI3K/AKT signaling pathway, there were 41 miRNAs and 136 mRNAs differentially expressed in the DA neurons while only 16 miRNAs and 20 mRNAs were differentially expressed in the non-DA neurons after the nicotine-alcohol exposure. These results depicted that chronic nicotine and alcohol exposures during pregnancy differentially affect both miRNA and gene expression profiles more in DA than the non-DA neurons in the VTA. Understanding how the expression signatures representing specific neuronal subpopulations become enriched in the VTA after addictive substance administration helps us to identify how neuronal functions may be altered in the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。