Differentially expressed extracellular matrix genes functionally separate ameloblastoma from odontogenic keratocyst

差异表达的细胞外基质基因在功能上将成釉细胞瘤与牙源性角化囊肿区分开

阅读:5
作者:Prasath Jeyaraman, Arularasan Anbinselvam, Sunday O Akintoye

Background

Ameloblastoma and odontogenic keratocyst (OKC) are odontogenic tumors that develop from remnants of odontogenic epithelium. Both display locally invasive growth characteristics and high predilection for recurrence after surgical removal. Most ameloblastomas harbor BRAFV600E mutation while OKCs are associated with PATCH1 gene mutation but distinctive indicators of ameloblastoma growth characteristics relative to OKC are still unclear. The

Conclusion

This study further validates a differentially upregulated expression of matrix proteins FN1, COL I and IGF-1 in ameloblastoma relative to OKC. It suggests that differential stromal architecture and growth characteristics of ameloblastoma relative to OKC could be an interplay of differentially upregulated genes in ameloblastoma.

Methods

RNA expression profiles were extracted from GSE186489 gene expression dataset acquired from Gene Expression Ominibus (GEO) database. Galaxy and iDEP online analysis tools were used to identify differentially expressed genes that were further characterized by gene ontology (GO) and pathway analysis using ShineyGO. The protein-protein interaction (PPI) network was constructed for significantly upregulated differentially expressed genes using online database STRING. The PPI network visualization was performed using Cytoscape and hub gene identification with cytoHubba. Top ten nodes were selected using maximum neighborhood component, degree and closeness algorithms and analysis of overlap was performed to confirm the hub genes. Epithelial-derived ameloblastoma cells from conventional ameloblastoma were transplanted into immunocompromised mice to recreate ameloblastoma in vivo based on the mouse xenograft model. The top 3 hub genes FN1, COL I and IGF-1 were validated by immunostaining and quantitative analysis of staining intensities to ameloblastoma, OKC samples and mouse ameloblastoma xenografts tissues.

Results

Seven hub genes were identified among which FN1, COL1A1/COL1A2 and IGF-1 are associated with extracellular matrix organization, collagen binding, cell adhesion and cell surface interaction. These were further validated by positive immunoreactivity within the stroma of ameloblastoma samples but both ameloblastoma xenograft and OKC displayed only FN1 and IGF-1 immunoreactivity while COL 1 was unreactive. The expression levels of both FN1 and IGF-1 were much lower in OKC relative to ameloblastoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。