Circ_0001947 encapsulated by small extracellular vesicles promotes gastric cancer progression and anti-PD-1 resistance by modulating CD8+ T cell exhaustion

被小细胞外囊泡包裹的Circ_0001947通过调节CD8+T细胞耗竭促进胃癌进展和抗PD-1耐药性

阅读:8
作者:Bingyu Wang #, Wenbo Liu #, Mingming Zhang, Yong Li, Hongyue Tang, Yingying Wang, Chao Song, Buyun Song, Bibo Tan

Background

While small extracellular vesicles (sEVs)-derived circular RNAs (circRNAs) have been emerged as significant players in cancer, the function and underlying mechanism of sEVs-derived circRNAs in anti-cancer immunity remain unclear.

Conclusions

Our study manifested the therapeutic potential of targeting sEVs-transmitted circ_0001947 to prohibit CD8+ T cell exhaustion and immune resistance in GC.

Methods

Gastric cancer (GC)-derived circRNAs were identified using RNA-seq data from GEO datasets and quantitative reverse transcription polymerase chain reaction (qRT-PCR), RNA immunoprecipitation, dual-luciferase assay, and bioinformatics analysis were performed to investigate the regulatory axis. Transwell assay, wound healing assay, cell counting kit-8 (CCK-8) assay, and xenograft models were used to evaluate its role in GC progression in vivo and in vitro. The delivery of specific circRNAs into sEVs were verified through electron microscopy, nanoparticle tracking analysis (NTA) and fuorescence in situ hybridization (FISH). Flow cytometric analysis and immunohistochemical staining were conducted to find out how specific circRNAs mediated CD8+ T cell exhaustion and resistant to anti-programmed cell death 1 (PD-1) therapy.

Results

We identified that circ_0001947, packaged by GC-derived sEVs, was obviously elevated in GC and was associated with poor clinical outcome. High circ0001947 level augmented the proliferation, migration, and invasion of GC cells. Mechanistically, circ0001947 sponged miR-661 and miR-671-5p to promote the expression of CD39, which further facilitated CD8+ T cell exhaustion and immune resistance. Conversely, blocking circ_0001947 attenuated CD8+ T cell exhaustion and increased the response to anti-PD-1 therapy. Conclusions: Our study manifested the therapeutic potential of targeting sEVs-transmitted circ_0001947 to prohibit CD8+ T cell exhaustion and immune resistance in GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。