Protective Effects of Tea Tree Oil on Inflammatory Injury of Porcine Intestinal Epithelial Cells Induced by Lipopolysaccharide In Vitro

茶树油对脂多糖诱导的猪肠上皮细胞炎症损伤的保护作用

阅读:7
作者:Li Dong, Qingqing Yuan, Guangzhi Qiu, Yongsheng Zhang, Hongrong Wang, Lihuai Yu

Abstract

Tea tree oil (TTO) improves the intestinal mucosal immunity of weaning piglets, but its underlying mechanism is not clear. We hypothesized that TTO may alleviate inflammatory injury by regulating the function of intestinal epithelial cells. Ileum epithelial cells (IPI-2I) were chosen and an inflammatory injury cell model was generated. The cell viability, cytokine secretion, and gene expression of TLR4 and NF-κB were measured to further evaluate the effects of TTO on the inflammatory injury in immune-stressed cells. The results showed that lipopolysaccharide (LPS; content: ≥30 μg/mL; time: 3 h, 6 h, or 9 h) decreased cell viability (p < 0.01), and 50 μg/mL LPS stimulated for 6 h resulted in an increased secretion of proinflammatory cytokines and a dramatically decreased secretion of anti-inflammatory cytokines (p < 0.05) in IPI-2I cells. Concentrations of 0-0.05% of TTO improved cell viability, while the 0.03% TTO treatment resulted in the highest cell viability and alleviated LPS-induced cell death (p < 0.01). In addition, 0.03% TTO alleviated the LPS-induced increase in the gene expression of IL-1β, TNFα, and IFNγ, as well as the decrease in the expression of IL-10 in IPI-2I cells (p < 0.05). LPS also upregulated the gene expression of TLR4 and NF-κB (p < 0.05); while TTO supplementation alleviated this effect (p < 0.05), 0.03% and 0.05% TTO supplementation had greater effects (p < 0.05). In conclusion, 50 μg/mL LPS stimulated for 6 h can be used to establish an immune-stressed cell model in IPI-2I cell lines, and 0.03% TTO treatment for 6 h alleviated inflammatory injury in the intestinal epithelial cells of pigs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。