3D-printed GelMA/CaSiO3 composite hydrogel scaffold for vascularized adipose tissue restoration

3D 打印 GelMA/CaSiO3 复合水凝胶支架用于血管化脂肪组织修复

阅读:8
作者:Jupei Zhang, Zhen Zeng, Yanxin Chen, Li Deng, Yanxin Zhang, Yumei Que, Yiren Jiao, Jiang Chang, Zhihong Dong, Chen Yang

Abstract

The increased number of mastectomies, combined with rising patient expectations for cosmetic and psychosocial outcomes, has necessitated the use of adipose tissue restoration techniques. However, the therapeutic effect of current clinical strategies is not satisfying due to the high demand of personalized customization and the timely vascularization in the process of adipose regeneration. Here, a composite hydrogel scaffold was prepared by three-dimensional (3D) printing technology, applying gelatin methacrylate anhydride (GelMA) as printing ink and calcium silicate (CS) bioceramic as an active ingredient for breast adipose tissue regeneration. The in vitro experiments showed that the composite hydrogel scaffolds could not only be customized with controllable architectures, but also significantly stimulated both 3T3-L1 preadipocytes and human umbilical vein endothelial cells in multiple cell behaviors, including cell adhesion, proliferation, migration and differentiation. Moreover, the composite scaffold promoted vascularized adipose tissue restoration under the skin of nude mice in vivo. These findings suggest that 3D-printed GelMA/CS composite scaffolds might be a good candidate for adipose tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。