The D-form of a novel heparan binding peptide decreases cytomegalovirus infection in vivo and in vitro

新型肝素结合肽的 D 型可降低体内和体外的巨细胞病毒感染

阅读:7
作者:Elisabeth A Pitt, Pranay Dogra, Ravi S Patel, Angela Williams, Jonathan S Wall, Tim E Sparer

Abstract

Human cytomegalovirus (HCMV) infection in utero can lead to congenital sensory neural hearing loss and mental retardation. Reactivation or primary infection can increase the morbidity and mortality in immune suppressed transplant recipients and AIDS patients. The current standard of care for HCMV disease is nucleoside analogs, which can be nephrotoxic. In addition resistance to current treatments is becoming increasingly common. In an effort to develop novel CMV treatments, we tested the effectiveness of the D-form of a novel heparan sulfate binding peptide, p5RD, at reducing infection of ganciclovir (GCV) resistant HCMVs in vitro and MCMV in vivo. HCMV infection was reduced by greater than 90% when cells were pretreated with p5RD. Because p5RD acts by a mechanism unrelated to those used by current antivirals, it was effective at reducing GCV resistant HCMVs by 85%. We show that p5RD is resistant to common proteases and serum inactivation, which likely contributed to its ability to significantly reduced infection of peritoneal exudate cells and viral loads in the spleen and the lungs in vivo. The ability of p5RD to reduce HCMV infectivity in vitro including GCV resistant HCMVs and MCMV infection in vivo suggests that this peptide could be a novel anti-CMV therapeutic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。