Noncanonical STAT1 phosphorylation expands its transcriptional activity into promoting LPS-induced IL-6 and IL-12p40 production

非典型 STAT1 磷酸化扩大其转录活性,促进 LPS 诱导的 IL-6 和 IL-12p40 产生

阅读:5
作者:Hozaifa Metwally, Toshio Tanaka, Songling Li, Gyanu Parajuli, Sujin Kang, Hamza Hanieh, Shigeru Hashimoto, Jaya P Chalise, Yohannes Gemechu, Daron M Standley, Tadamitsu Kishimoto

Abstract

The lipopolysaccharide (LPS)-induced endocytosis of Toll-like receptor 4 (TLR4) is an essential step in the production of interferon-β (IFN-β), which activates the transcription of antiviral response genes by STAT1 phosphorylated at Tyr701 Here, we showed that STAT1 regulated proinflammatory cytokine production downstream of TLR4 endocytosis independently of IFN-β signaling and the key proinflammatory regulator NF-κB. In human macrophages, TLR4 endocytosis activated a noncanonical phosphorylation of STAT1 at Thr749, which subsequently promoted the production of interleukin-6 (IL-6) and IL-12p40 through distinct mechanisms. STAT1 phosphorylated at Thr749 activated the expression of the gene encoding ARID5A, which stabilizes IL6 mRNA. Moreover, STAT1 phosphorylated at Thr749 directly enhanced transcription of the gene encoding IL-12p40 (IL12B). Instead of affecting STAT1 nuclear translocation, phosphorylation of Thr749 facilitated the binding of STAT1 to a noncanonical DNA motif (5'-TTTGANNC-3') in the promoter regions of ARID5A and IL12B The endocytosis of TLR4 induced the formation of a complex between the kinases TBK1 and IKKβ, which mediated the phosphorylation of STAT1 at Thr749 Our data suggest that noncanonical phosphorylation in response to LPS confers STAT1 with distinct DNA binding and gene-regulatory properties that promote both IL12B expression and IL6 mRNA stabilization. Thus, our study provides a potential mechanism for how TLR4 endocytosis might regulate proinflammatory cytokine production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。