Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway

飞燕草素通过 AMPK/NOX/MAPK 信号通路减轻病理性心脏肥大

阅读:9
作者:Youming Chen, Zhuowang Ge, Shixing Huang, Lei Zhou, Changlin Zhai, Yuhan Chen, Qiuyue Hu, Wei Cao, Yuteng Weng, Yanyan Li

Abstract

Reactive oxygen species (ROS) play a pivotal role in the development of pathological cardiac hypertrophy. Delphinidin, a natural flavonoid, was reported to exert marked antioxidative effects. Therefore, we investigated whether delphinidin ameliorates pathological cardiac hypertrophy via inhibiting oxidative stress. In this study, male C57BL/6 mice were treated with DMSO or delphinidin after surgery. Neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) and delphinidin in vitro. Eighteen-month-old mice were administered delphinidin to investigate the effect of delphinidin on aging-related cardiac hypertrophy. Through analyses of hypertrophic cardiomyocyte growth, fibrosis and cardiac function, delphinidin was demonstrated to confer resistance to aging- and transverse aortic constriction (TAC)-induced cardiac hypertrophy in vivo and attenuate Ang II-induced cardiomyocyte hypertrophy in vitro by significantly suppressing hypertrophic growth and the deposition of fibrosis. Mechanistically, delphinidin reduced ROS accumulation upon Ang II stimulation through the direct activation of AMP-activated protein kinase (AMPK) and subsequent inhibition of the activity of Rac1 and expression of p47phox. In addition, excessive levels of ERK1/2, P38 and JNK1/2 phosphorylation induced by oxidative stress were abrogated by delphinidin. Delphinidin was conclusively shown to repress pathological cardiac hypertrophy by modulating oxidative stress through the AMPK/NADPH oxidase (NOX)/mitogen-activated protein kinase (MAPK) signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。