CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p /SNCA signal axis in non-small-cell lung cancer cells

CircZNF208 通过 miR-7-5p /SNCA 信号轴增强非小细胞肺癌细胞对 X 射线而非碳离子的敏感性

阅读:6
作者:Bingtao Liu, Hongbin Li, Xiongxiong Liu, Feifei Li, Weiqiang Chen, Yanbei Kuang, Xueshan Zhao, Linying Li, Boyi Yu, Xiaodong Jin, Qiang Li

Background

Mounting evidence suggests that circular RNAs (circRNAs) are closely related to the regulation of gene expression during tumour development. However, the role of circRNAs in modulating the radiosensitivity of non-small cell lung cancer (NSCLC) cells has not been explored.

Conclusions

Knockdown of circZNF208 altered the radiosensitivity of patients with NSCLC to X-rays but did not significantly change the sensitivity to carbon ions. Therefore, circZNF208 might serve as a potential biomarker and therapeutic target for NSCLC treatment with radiotherapy of different modalities.

Methods

Transcriptome sequencing was used to explore the expression profiles of circRNAs in NSCLC. The expression level of circRNAs was changed by inducing instantaneous knockdown or overexpression. Changes in proliferation and radiosensitivity of NSCLC cells were investigated using CCK-8, EDU, and clonal survivals.

Results

By analysing the circRNA expression profile of NSCLC cells, we found that circRNA ZNF208 (circZNF208) was significantly upregulated in a radioresistant NSCLC cell line (A549-R11), which was acquired from the parental NSCLC cell line A549. Knockout experiments indicated that circZNF208 enhanced the radiosensitivity of A549 and A549-R11 cells to X-rays. Mechanistically, circZNF208 upregulated SNCA expression by acting as a sponge of miR-7-5p and subsequently promoted the resistance of NSCLC cells to low linear energy transfer (LET) X-rays. However, this effect was not observed in NSCLC cells exposed to high-LET carbon ions. Conclusions: Knockdown of circZNF208 altered the radiosensitivity of patients with NSCLC to X-rays but did not significantly change the sensitivity to carbon ions. Therefore, circZNF208 might serve as a potential biomarker and therapeutic target for NSCLC treatment with radiotherapy of different modalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。