Cell-free reconstitution reveals the molecular mechanisms for the initiation of secondary siRNA biogenesis in plants

无细胞重建揭示植物中次级 siRNA 生物合成启动的分子机制

阅读:15
作者:Yuriki Sakurai, Kyungmin Baeg, Andy Y W Lam, Keisuke Shoji, Yukihide Tomari, Hiro-Oki Iwakawa

Abstract

Secondary small interfering RNA (siRNA) production, triggered by primary small RNA targeting, is critical for proper development and antiviral defense in many organisms. RNA-dependent RNA polymerase (RDR) is a key factor in this pathway. However, how RDR specifically converts the targets of primary small RNAs into double-stranded RNA (dsRNA) intermediates remains unclear. Here, we develop an in vitro system that allows for dissection of the molecular mechanisms underlying the production of trans-acting siRNAs, a class of plant secondary siRNAs that play roles in organ development and stress responses. We find that a combination of the dsRNA-binding protein, SUPPRESSOR OF GENE SILENCING3; the putative nuclear RNA export factor, SILENCING DEFECTIVE5, primary small RNA, and Argonaute is required for physical recruitment of RDR6 to target RNAs. dsRNA synthesis by RDR6 is greatly enhanced by the removal of the poly(A) tail, which can be achieved by the cleavage at a second small RNA-binding site bearing appropriate mismatches. Importantly, when the complementarity of the base pairing at the second target site is too strong, the small RNA-Argonaute complex remains at the cleavage site, thereby blocking the initiation of dsRNA synthesis by RDR6. Our data highlight the light and dark sides of double small RNA targeting in the secondary siRNA biogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。