Metformin suppresses epithelial sodium channel hyperactivation and its associated phenotypes in a mouse model of obstructive lung diseases

二甲双胍抑制阻塞性肺病小鼠模型中的上皮钠通道过度活化及其相关表型

阅读:6
作者:Ryunosuke Nakashima, Hirofumi Nohara, Noriki Takahashi, Aoi Nasu, Megumi Hayashi, Tomoki Kishimoto, Shunsuke Kamei, Haruka Fujikawa, Kasumi Maruta, Taisei Kawakami, Yuka Eto, Keiko Ueno-Shuto, Mary Ann Suico, Hirofumi Kai, Tsuyoshi Shuto

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death in the world, and has no radical treatment. Inhibition of amiloride-sensitive epithelial sodium ion channel (ENaC) has now been considered as a potential therapeutic target against COPD. One possible modulator of ENaC is AMP-activated protein kinase (AMPK), a key molecule that controls a wide variety of cellular signals; however, little is known about whether metformin, a clinically available AMPK activator, has a protective role against ENaC-associated chronic pulmonary phenotypes, such as emphysema and pulmonary dysfunction. We first used ENaC-overexpressing human bronchial epithelial cells (β/γENaC-16HBE14o-) and identified that Metformin significantly reduced ENaC activity. Consistently, in vivo treatment of ENaC-overexpressing COPD mouse model (C57BL/6-βENaC-Tg mice) showed improvement of emphysema and pulmonary dysfunction, without any detrimental effect on non-pulmonary parameters (blood glucose level etc.). Bronchoalveolar lavage fluid (BALF) and lung tissue analyses revealed significant suppression in the infiltration of neutrophils as well as the expression of inflammatory markers (KC), neutrophil gelatinase (MMP9) and macrophage elastase (MMP12) in metformin-treated C57BL/6-βENaC-Tg mice. Overall, the present study demonstrates that metformin directly inhibits ENaC activity in vitro and provides the first evidence of therapeutical benefit of Metformin for COPD with higher ENaC activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。