Increased expression of CSF1 in patients with eosinophilic asthma

嗜酸性哮喘患者 CSF1 表达增加

阅读:5
作者:Lijuan Du, Lu Tang, Lisha Xiao, Kun Tang, Zhimin Zeng, Yuxia Liang, Yubiao Guo

Background

The link between colony-stimulating factor 1 (CSF1) and asthma was reported recently. However, the role and mechanism of CSF1 in asthma remain poorly understood. In this study, we aimed to explore the expression and its potential mechanism of CSF1 in asthma.

Conclusions

Sputum CSF1 may be involved in asthmatic airway eosinophil inflammation by interacting with CSF1R and further activating the STAT1 signaling. Interfering this potential pathway could serve as an anti-inflammatory therapy for asthma.

Methods

CSF1 expression in the airway samples from asthmatics and healthy controls were examined, then the correlations between CSF1 and eosinophilic indicators were analyzed. Subsequently, bronchial epithelial cells (BEAS-2B) with CSF1 overexpression and knockdown were constructed to investigate the potential molecular mechanism of CSF1. Finally, the effect of CSF1R inhibitor on STAT1 was investigated.

Results

The expression of CSF1 was significantly increased in patients with asthma compared to healthy controls, especially in patients with severe and eosinophilic asthma. Upregulated CSF1 positively correlated with airway-increased eosinophil inflammation. In vitro, cytokines interleukin 13 (IL-13) and IL-33 can stimulate the upregulation of CSF1 expression. CSF1 overexpression enhanced p-CSF1R/CSF1R and p-STAT1/STAT1 expression, while knockdown CSF1 using anti-CSF1 siRNAs decreased p-CSF1R/CSF1R and p-STAT1/STAT1 expression. Furthermore, the inhibitor of CSF1R significantly decreased p-STAT1/STAT1 expression. Conclusions: Sputum CSF1 may be involved in asthmatic airway eosinophil inflammation by interacting with CSF1R and further activating the STAT1 signaling. Interfering this potential pathway could serve as an anti-inflammatory therapy for asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。