Effect of Ciprofloxacin on Susceptibility to Aortic Dissection and Rupture in Mice

环丙沙星对小鼠主动脉夹层及破裂易感性的影响

阅读:6
作者:Scott A LeMaire, Lin Zhang, Wei Luo, Pingping Ren, Alon R Azares, Yidan Wang, Chen Zhang, Joseph S Coselli, Ying H Shen

Objective

To examine the effect of ciprofloxacin on AAD development in mice. Design, setting, and participants: In a mouse model of moderate, sporadic AAD, 4-week-old male and female C57BL/6J mice were challenged with a high-fat diet and low-dose angiotensin infusion (1000 ng/min/kg). Control unchallenged mice were fed a normal diet and infused with saline. After randomization, challenged and unchallenged mice received ciprofloxacin (100 mg/kg/d) or vehicle through daily gavage during angiotensin or saline infusion. Aortic aneurysm and dissection development and aortic destruction were compared between mice. The direct effects of ciprofloxacin on aortic smooth muscle cells were examined in cultured cells.

Results

No notable aortic destruction was observed in unchallenged mice that received ciprofloxacin alone. Aortic challenge induced moderate aortic destruction with development of AAD in 17 of 38 mice (45%) and severe AAD in 9 (24%) but no rupture or death. However, challenged mice that received ciprofloxacin had severe aortic destruction and a significantly increased incidence of AAD (38 of 48 [79%]; P = .001; χ2 = 10.9), severe AAD (32 of 48 [67%]; P < .001; χ2 = 15.7), and rupture and premature death (7 of 48 [15%]; P = .01; χ2 = 6.0). The increased AAD incidence was observed in different aortic segments and was similar between male and female mice. Compared with aortic tissues from challenged control mice, those from challenged mice that received ciprofloxacin showed decreased expression of lysyl oxidase, an enzyme that is critical in the assembly and stabilization of elastic fibers and collagen. These aortas also showed increased matrix metalloproteinase levels and activity, elastic fiber fragmentation, and aortic cell injury. In cultured smooth muscle cells, ciprofloxacin treatment significantly reduced lysyl oxidase expression and activity, increased matrix metalloproteinase expression and activity, suppressed cell proliferation, and induced cell death. Furthermore, ciprofloxacin-a DNA topoisomerase inhibitor-caused nuclear and mitochondrial DNA damage and the release of DNA into the cytosol, subsequently inducing mitochondrial dysfunction, reactive oxygen species production, and activation of the cytosolic DNA sensor STING, which we further showed was involved in the suppression of lysyl oxidase expression and induction of matrix metalloproteinase expression. Conclusions and relevance: Ciprofloxacin increases susceptibility to aortic dissection and rupture in a mouse model of moderate, sporadic AAD. Ciprofloxacin should be used with caution in patients with aortic dilatation, as well as in those at high risk for AAD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。