Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7

与 IP6K1 的相互作用支持肌醇焦磷酸 5-InsP7 对底物蛋白进行焦磷酸化

阅读:4
作者:Aisha Hamid #, Jayashree S Ladke #, Akruti Shah #, Shubhra Ganguli, Monisita Pal, Arpita Singh, Rashna Bhandari

Abstract

Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。