Blast crisis Ph+ chronic myeloid leukemia with NUP98/HOXA13 up-regulating MSI2

伴有 NUP98/HOXA13 上调 MSI2 的急变 Ph+ 慢性粒细胞白血病

阅读:5
作者:Danika Di Giacomo, Valentina Pierini, Gianluca Barba, Veronica Ceccarelli, Alba Vecchini, Cristina Mecucci

Background

Musashi2(Msi2)-Numb pathway de-regulation is a molecular mechanism underlying the transition of chronic phase Ph + CML to deadly blast crisis, particularly in cases with a NUP98/HOXA9 fusion from a t(7;11)(p15;p15). This study provides new insights on the mechanisms cooperating in driving MSI2 over-expression and progression of Ph-positive CML.

Conclusions

To the best of our knowledge, this is the first molecular characterization of NUP98/HOXA13 fusion in blast crisis of Ph + CML. Our findings suggest cooperative mechanisms of MSI2 over-expression driven by HOXA proteins and strongly supports MSI2 as a prognostic marker and a candidate in target treatment of CML.

Results

Herein we describe a t(7;11)(p15;p15) originating a NUP98 fusion with HOXA13, at 7p15, in a 39 year-old man in blast crisis of Ph-positive CML. Both MSI2 and HOXA9 were evaluated by quantitative RT-PCR in our patient and in a series of haematological malignancies. Up-regulation of both genes emerged only in the presence of NUP98/HOXA13 gene fusion. However, over-expression of MSI2, but not HOXA9, was found in 2 cases of Ph + blast crisis with additional chromosome aberrations other than t(7;11). To determine the mechanisms underlying MSI2 over-expression in our patient we performed Chromatin Immunoprecipitation and found that NUP98/HOXA13 fusion protein deregulates MSI2 gene by binding its promoter. Conclusions: To the best of our knowledge, this is the first molecular characterization of NUP98/HOXA13 fusion in blast crisis of Ph + CML. Our findings suggest cooperative mechanisms of MSI2 over-expression driven by HOXA proteins and strongly supports MSI2 as a prognostic marker and a candidate in target treatment of CML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。