Epithelial JAM-A is fundamental for intestinal wound repair in vivo

上皮 JAM-A 是体内肠道伤口修复的基础

阅读:4
作者:Shuling Fan, Kevin Boerner, Chithra K Muraleedharan, Asma Nusrat, Miguel Quiros, Charles A Parkos

Abstract

Junctional adhesion molecule-A (JAM-A) is expressed in several cell types, including epithelial and endothelial cells, as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration; however, in vivo studies investigating the role of JAM-A in cell migration-dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial-specific JAM-A-knockdown mouse model (Jam-aERΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A-deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/β1 integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and β1 integrin, and it led to a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。