Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1

他克莫司诱导的移植后慢性肾脏纤维化的机制由 ox-LDL 及其受体 LOX-1 调控

阅读:5
作者:Shi Deng, Tao Jin, Li Zhang, Hong Bu, Peng Zhang

Abstract

Chronic renal allograft dysfunction (CRAD) is the most common cause of graft failure following renal transplantation. However, the underlying mechanisms remain to be fully elucidated. Immunosuppressants and hyperlipidemia are associated with renal fibrosis following long‑term use. The present study aimed to determine the effects of tacrolimus (FK506) and lipid metabolism disorder on CRAD. In vitro and in vivo models were used for this investigation. Cells of the mouse proximal renal tubular epithelial cell strain, NRK‑52E, were cultured either with oxidized low‑density lipoprotein (ox‑LDL), FK506, ox‑LDL combined with FK506, or vehicle, respectively. Changes in cell morphology and changes in the levels of lectin‑like ox‑LDL receptor‑1 (LOX‑1), reactive oxygen species (ROS), hydrogen peroxide and fibrosis‑associated genes were evaluated at 24, 48 and 72 h. In separate experiment, total of 60 Sprague‑Dawley rats were divided randomly into four groups, which included a high‑fat group, FK506 group, high‑fat combined with FK506 group, and control group. After 2, 4 and 8 weeks, the serum lipid levels, the levels of ox‑LDL, ROS, and the expression levels of transforming growth factor (TGF)‑β1 and connective tissue growth factor were determined. The in vitro and in vivo models revealed that lipid metabolism disorder and FK506 caused oxidative stress and a fibrogenic response. In addition, decreased levels of LOX‑1 markedly reduced the levels of TGF‑β1 in the in vitro model. Taken together, FK506 and dyslipidemia were found to be associated with CRAD following transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。