Tuning Amorphous Selenium Composition with Tellurium to Improve Quantum Efficiency at Long Wavelengths and High Applied Fields

调节非晶态硒与碲的组成以提高长波长和高应用场的量子效率

阅读:6
作者:Kaitlin Hellier, Derek A Stewart, John Read, Roy Sfadia, Shiva Abbaszadeh

Abstract

Amorphous selenium (a-Se) is a large-area compatible photoconductor that has received significant attention toward the development of UV and X-ray detectors for a wide range of applications in medical imaging, life science, high-energy physics, and nuclear radiation detection. A subset of applications require detection of photons with spectral coverage from UV to infrared wavelengths. In this work, we present a systematic study utilizing density functional theory simulations and experimental studies to investigate optical and electrical properties of a-Se alloyed with tellurium (Te). We report hole and electron mobilities and conversion efficiencies for a-Se1-xTex (x = 0, 0.03, 0.05, 0.08) devices as a function of applied field, along with band gaps and comparisons to previous studies. For the first time, these values are reported at high electric field (>10 V/μm), demonstrating recovery of quantum efficiency in Se-Te alloys. A comparison to the Onsager model for a-Se demonstrates the strong field dependence in the thermalization length and expands on the role of defect states in device performance.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。