Aging-associated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment

二甲双胍治疗无法挽救小鼠脂肪组织中与衰老相关的脂解蛋白和线粒体蛋白的减少

阅读:5
作者:Elise Mennes, Cory M Dungan, Scott Frendo-Cumbo, David L Williamson, David C Wright

Abstract

Mitochondrial enzyme expression is reduced in adipose tissue from old mice, yet little is known regarding mechanisms that could be mediating, or interventions that could be used, to reverse these changes. The purpose of this study was to examine the relationship between lipolytic and fatty acid reesterification enzymes, 5' adenosine monophosphate-activated protein kinase and mitochondrial proteins in adipose tissue from young versus old mice. A second aim was to determine whether metformin treatment could rescue the age-associated decline in adipose tissue mitochondrial proteins. Approximately 22-month-old male C57BL/6 mice were fed a diet with or without 0.5% metformin for 8 weeks. Compared with young mice (~11 wk of age), the protein content/phosphorylation of hormone-sensitive lipase, adipose tissue triglyceride lipase, and phosphoenolpyruvate carboxykinase were reduced in old mice. This was paralleled by increases in the plasma nonesterified fatty acid:glycerol ratio and reductions in adipose tissue 5' adenosine monophosphate-activated protein kinase activity and select mitochondrial proteins in old mice. There were no differences in these variables when comparing adipose tissue from young and 6-month-old mice. While metformin improved glucose homeostasis, it did not increase 5' adenosine monophosphate-activated protein kinase phosphorylation or mitochondrial enzymes. Our findings demonstrate a co-ordinated down regulation of lipolytic, reesterification, and mitochondrial enzymes in adipose tissue with aging that is unresponsive to metformin treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。