Side-by-side comparison of G-quadruplex (G4) capture efficiency of the antibody BG4 versus the small-molecule ligands TASQs

抗体 BG4 与小分子配体 TASQs 的 G-四链体 (G4) 捕获效率的并排比较

阅读:6
作者:Yilong Feng, Zexue He, Zhenyu Luo, Francesco Rota Sperti, Ibai E Valverde, Wenli Zhang, David Monchaud

Abstract

The search for G-quadruplex (G4)-forming sequences across the genome is motivated by their involvement in key cellular processes and their putative roles in dysregulations underlying human genetic diseases. Sequencing-based methods have been developed to assess the prevalence of DNA G4s genome wide, including G4-seq to detect G4s in purified DNA (in vitro) using the G4 stabilizer PDS, and G4 chromatin immunoprecipitation sequencing (G4 ChIP-seq) to detect G4s in in situ fixed chromatin (in vivo) using the G4-specific antibody BG4. We recently reported on G4-RNA precipitation and sequencing (G4RP-seq) to assess the in vivo prevalence of RNA G4 landscapes transcriptome wide using the small molecule BioTASQ. Here, we apply this technique for mapping DNA G4s in plants (rice) and compare the efficiency of this new technique, G4-DNA precipitation and sequencing, G4DP-seq, to that of BG4-DNA-IP-seq that we developed for mapping of DNA G4s in rice using BG4. By doing so, we compare the G4 capture ability of small-sized ligands (BioTASQ and BioCyTASQ) versus the antibody BG4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。