Heme Oxygenase-1-Mediated Autophagy Protects against Oxidative Damage in Rat Nucleus Pulposus-Derived Mesenchymal Stem Cells

血红素加氧酶-1 介导的自噬可防止大鼠髓核间充质干细胞的氧化损伤

阅读:5
作者:Sheng Chen, Sheng Liu, Lei Zhao, Hui Lin, Kaige Ma, Zengwu Shao

Abstract

Although endogenous nucleus pulposus-derived mesenchymal stem cell- (NPMSC-) based regenerative medicine has provided promising repair strategy for intervertebral disc (IVD) degeneration, the hostile microenvironments in IVD, including oxidative stress, can negatively affect the survival and function of the NPMSCs and severely hinder the endogenous repair process. Therefore, it is of great importance to reveal the mechanisms of the endogenous repair failure caused by the adverse microenvironments in IVD. The aim of this study was to investigate the effect of oxidative stress on the rat NPMSCs and its underlying mechanism. Our results demonstrated that oxidative stress inhibited cell viability, induced apoptosis, and increased the production of reactive oxygen species (ROS) in NPMSCs. In addition, the results showed that the expression level of heme oxygenase-1 (HO-1) increased at an early stage but decreased at a late stage when NPMSCs were exposed to oxidative stress, and the oxidative damages of NPMSCs could be partially reversed by promoting the expression of HO-1. Further mechanistic analysis indicated that the protective effect of HO-1 against oxidative damage in NPMSCs was mediated by the activation of autophagy. Taken together, our study revealed that oxidative stress could inhibit cell viability, induce apoptosis, and increase ROS production in NPMSCs, and HO-1-mediated autophagy might act as a protective response to the oxidative damage. These findings might enhance our understanding on the mechanism of the endogenous repair failure during IVD degeneration and provide novel research direction for the endogenous repair of IVD degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。