Zuranolone therapy protects frontal cortex neurodevelopment and improves behavioral outcomes after preterm birth

祖拉诺龙疗法可保护额叶皮质神经发育并改善早产后的行为结果

阅读:5
作者:Roisin A Moloney, Hannah K Palliser, Carlton L Pavy, Julia C Shaw, Jonathan J Hirst

Background

Preterm birth is associated with brain injury and long-term behavioral abnormalities, for which there are limited prevention options. When born preterm, infants prematurely lose placental neurosteroid (allopregnanolone) support. This increases the risk of excitotoxic damage to the brain, which increases the risk of injury, causing long-term deficits in behavior, myelination, and alterations to neurotransmitter pathways. We propose that postnatal restoration of neurosteroid action through zuranolone therapy will reduce neurological impairments following preterm birth.

Conclusion

This is the first study to assess zuranolone treatment as a neuroprotective therapy following preterm birth. Zuranolone treatment improved behavioral outcomes and structural changes in the preterm offspring, which continued long term until at least a late childhood timepoint. Clinical studies are warranted for further exploring the neuroprotective possibilities of this treatment following preterm birth.

Methods

Guinea pig dams underwent survival cesarean section surgery to deliver pups prematurely (GA64) or at term (GA69). Between birth and term equivalence age, preterm pups received vehicle (15% β-cyclodextrin) or the allopregnanolone analogue zuranolone (1 mg/kg/day). Behavioral analysis was performed at postnatal day (PND) 7 and 40, before tissue collection at PND 42. Immunostaining for myelin basic protein (MBP), as well as real-time polymerase chain reaction to characterize oligodendrocyte lineage and neurotransmitter pathways, was performed in frontal cortex tissues.

Results

Zuranolone treatment prevented the hyperactive phenotype in preterm-born offspring, most markedly in males. Additionally, preterm-related reductions in MBP were ameliorated. Several preterm-related alterations in mRNA expression of dopaminergic, glutamatergic, and GABAergic pathways were also restored back to that of a term control level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。