Rapid cleavage of IL-1β in DRG neurons produces tissue injury-induced pain hypersensitivity

DRG 神经元中 IL-1β 的快速裂解产生组织损伤引起的疼痛高敏性

阅读:6
作者:Daisuke Fujita, Yutaka Matsuoka, Shunsuke Yamakita, Yasuhiko Horii, Daiki Ishikawa, Kohsuke Kushimoto, Hiroaki Amino, Fumimasa Amaya

Background

IL-1β plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1β (cIL-1β) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1β in nociceptive transduction after tissue injury.

Conclusion

IL-1β in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1β causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1β in the primary afferent neurons is involved in physiological nociceptive signal transduction.

Methods

A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1β, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1β expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1β on the activity of spinal dorsal horn neurons.

Results

cIL-1β expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1β cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1β expression. Regional anesthesia using local anesthetics prevented cIL-1β processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。