A multimodal AI-based non-invasive COVID-19 grading framework powered by deep learning, manta ray, and fuzzy inference system from multimedia vital signs

基于多模态人工智能的非侵入式 COVID-19 分级框架,由深度学习、蝠鲼和基于多媒体生命体征的模糊推理系统提供支持

阅读:5
作者:Saleh Ateeq Almutairi

Abstract

The COVID-19 pandemic has presented unprecedented challenges to healthcare systems worldwide. One of the key challenges in controlling and managing the pandemic is accurate and rapid diagnosis of COVID-19 cases. Traditional diagnostic methods such as RT-PCR tests are time-consuming and require specialized equipment and trained personnel. Computer-aided diagnosis systems and artificial intelligence (AI) have emerged as promising tools for developing cost-effective and accurate diagnostic approaches. Most studies in this area have focused on diagnosing COVID-19 based on a single modality, such as chest X-rays or cough sounds. However, relying on a single modality may not accurately detect the virus, especially in its early stages. In this research, we propose a non-invasive diagnostic framework consisting of four cascaded layers that work together to accurately detect COVID-19 in patients. The first layer of the framework performs basic diagnostics such as patient temperature, blood oxygen level, and breathing profile, providing initial insights into the patient's condition. The second layer analyzes the coughing profile, while the third layer evaluates chest imaging data such as X-ray and CT scans. Finally, the fourth layer utilizes a fuzzy logic inference system based on the previous three layers to generate a reliable and accurate diagnosis. To evaluate the effectiveness of the proposed framework, we used two datasets: the Cough Dataset and the COVID-19 Radiography Database. The experimental results demonstrate that the proposed framework is effective and trustworthy in terms of accuracy, precision, sensitivity, specificity, F1-score, and balanced accuracy. The audio-based classification achieved an accuracy of 96.55%, while the CXR-based classification achieved an accuracy of 98.55%. The proposed framework has the potential to significantly improve the accuracy and speed of COVID-19 diagnosis, allowing for more effective control and management of the pandemic. Furthermore, the framework's non-invasive nature makes it a more attractive option for patients, reducing the risk of infection and discomfort associated with traditional diagnostic methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。