Spatiotemporal Decline of BMP Signaling Activity in Neural Progenitors Mediates Fate Transition and Safeguards Neurogenesis

神经祖细胞中 BMP 信号活性的时空下降介导命运转变并保障神经发生

阅读:6
作者:Tsz Ching Ma, Keng Ioi Vong, Kin Ming Kwan

Abstract

Neural progenitors undergo temporal fate transition to generate diversified neurons in stereotyped sequence during development. However, the molecular machineries driving progenitor fate change remain unclear. Here, using the cerebellum as a platform, we demonstrate that the temporal dynamics of a dorsoventral bone morphogenetic protein (BMP)/SMAD signaling gradient orchestrates the transition from early to late phase of neurogenesis. Initially, high BMP/SMAD activity in cerebellum neural progenitors transcriptionally represses the late-born interneuron fate determinant Gsx1. As development proceeds, gradual decline in SMAD activities from ventral to dorsal progenitors progressively alleviates suppression on Gsx1 and allows transition of progenitor fate. Manipulating the BMP signaling dynamics can either lead to an immediate halt or rapid acceleration of the temporal fate switch, thus unbalancing the generation of distinct neuronal populations. Our study thus demonstrates that neural progenitors possess inherent competence to produce late-born neurons, yet identity transition is mechanistically executed by precisely timed and positioned reduction of repressors for late-fate determinants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。