Age attenuates the T-type CaV 3.2-RyR axis in vascular smooth muscle

年龄会减弱血管平滑肌中的 T 型 CaV 3.2-RyR 轴

阅读:5
作者:Gang Fan, Mario Kaßmann, Yingqiu Cui, Claudia Matthaeus, Séverine Kunz, Cheng Zhong, Shuai Zhu, Yu Xie, Dmitry Tsvetkov, Oliver Daumke, Yu Huang, Maik Gollasch

Abstract

Caveolae position CaV 3.2 (T-type Ca2+ channel encoded by the α-3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large-conductance Ca2+ -activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav 3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl-ß-cyclodextrin or genetic abolition of Eps15 homology domain-containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav 3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav 1.2-/- mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV 3.2-RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV 1.2 and CaV 3.2 channel blockade. Our data demonstrate that the VSMC CaV 3.2-RyR axis is down-regulated by aging. This defective CaV 3.2-RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。