Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect

Salermide 是一种 Sirtuin 抑制剂,具有强效的癌症特异性促凋亡作用

阅读:4
作者:E Lara, A Mai, V Calvanese, L Altucci, P Lopez-Nieva, M L Martinez-Chantar, M Varela-Rey, D Rotili, A Nebbioso, S Ropero, G Montoya, J Oyarzabal, S Velasco, M Serrano, M Witt, A Villar-Garea, A Imhof, J M Mato, M Esteller, M F Fraga

Abstract

Sirtuin 1 (Sirt1) and Sirtuin 2 (Sirt2) belong to the family of NAD+ (nicotinamide adenine dinucleotide-positive)-dependent class III histone deacetylases and are involved in regulating lifespan. As cancer is a disease of ageing, targeting Sirtuins is emerging as a promising antitumour strategy. Here we present Salermide (N-{3-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-phenyl}-2-phenyl-propionamide), a reverse amide with a strong in vitro inhibitory effect on Sirt1 and Sirt2. Salermide was well tolerated by mice at concentrations up to 100 muM and prompted tumour-specific cell death in a wide range of human cancer cell lines. The antitumour activity of Salermide was primarily because of a massive induction of apoptosis. This was independent of global tubulin and K16H4 acetylation, which ruled out a putative Sirt2-mediated apoptotic pathway and suggested an in vivo mechanism of action through Sirt1. Consistently with this, RNA interference-mediated knockdown of Sirt1, but not Sirt2, induced apoptosis in cancer cells. Although p53 has been reported to be a target of Sirt1, genetic p53 knockdowns showed that the Sirt1-dependent proapoptotic effect of Salermide is p53-independent. We were finally able to ascribe the apoptotic effect of Salermide to the reactivation of proapoptotic genes epigenetically repressed exclusively in cancer cells by Sirt1. Taken together, our results underline Salermide's promise as an anticancer drug and provide evidence for the molecular mechanism through which Sirt1 is involved in human tumorigenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。