Synthesis and application of molecular probe for detection of hydroxyl radicals produced by Na(125)I and gamma-rays in aqueous solution

分子探针的合成及在检测水溶液中Na(125)I和γ射线产生的羟基自由基的应用

阅读:5
作者:Amarjit Singh, Yongliang Yang, S James Adelstein, Amin I Kassis

Conclusion

Compound 7 quantifies lower concentrations of (*)OH than do 1 and 9. This detector is therefore likely to be a good reporter of (*)OH produced within a few nanometers of DNA.

Methods

Using computer-generated molecular modeling, 7 and 9 and their respective 7-hydroxylated derivatives 8 and 10 were docked onto DNA dodecamer d(CGCGAATTCGCG)2, the ligand-DNA complexes were energy minimized, and binding free energies and inhibition constants were calculated. Compound 7 was judged an appropriate target molecule and was synthesized. Compounds 1, 7, and 9 were incubated with Na(125)I or irradiated with (137)Cs gamma-rays, and the influence of pH, dose, type of radiation, and the concentration of indicator on fluorescence yield were determined.

Purpose

To synthesize N-(3-(3-aminopropylamino)propyl)-2-oxo-2H-chromene-3-carboxamide (7), a novel DNA-binding, coumarin-based, fluorescent hydroxylradical ((*)OH) indicator and to assess its quantum efficiency compared with that of coumarin-3-carboxylic acid (1) and N1,N12-bis[2-oxo-2H-chromene-3-carbonyl]- 1,12-diamine-4,9-diazadodecane (9). Materials and

Results

Non-fluorescent 7 and 9 are converted to fluorescent, 7-hydroxylated derivatives 8 and 10 after interaction with (*)OH in aqueous solution. For 1, 7, and 9, hydroxylation yield increases linearly with both Na(125)I dose (0-700 x 10(6) decays) and (137)Cs dose (0-11.0 Gy). Fluorescence induction is significantly reduced at acidic pH and the fluorescent quantum yield of 8 is approximately 3 times that of 2 or 10 at pH 7.0. With Na(125)I incubation and gamma-ray irradiation, the fluorescence signal of 7 increases linearly with concentration and saturates at approximately 50 microM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。