Effective Prognostic Model for Therapy Response Prediction in Acute Myeloid Leukemia Patients

急性髓系白血病患者治疗反应预测的有效预后模型

阅读:5
作者:Maria A Kolesnikova, Aleksandra V Sen'kova, Tatiana I Pospelova, Marina A Zenkova

Abstract

Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by the malignant transformation of bone marrow-derived myeloid progenitor cells with extremely short survival. To select the optimal treatment options and predict the response to therapy, the stratification of AML patients into risk groups based on genetic factors along with clinical characteristics is carried out. Despite this thorough approach, the therapy response and disease outcome for a particular patient with AML depends on several patient- and tumor-associated factors. Among these, tumor cell resistance to chemotherapeutic agents represents one of the main obstacles for improving survival outcomes in AML patients. In our study, a new prognostic scale for the risk stratification of AML patients based on the detection of the sensitivity or resistance of tumor cells to chemotherapeutic drugs in vitro as well as MDR1 mRNA/P-glycoprotein expression, tumor origin (primary or secondary), cytogenetic abnormalities, and aberrant immunophenotype was developed. This study included 53 patients diagnosed with AML. Patients who received intensive or non-intensive induction therapy were analyzed separately. Using correlation, ROC, and Cox regression analyses, we show that the risk stratification of AML patients in accordance with the developed prognostic scale correlates well with the response to therapy and represents an independent predictive factor for the overall survival of patients with newly diagnosed AML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。