Nonautonomous movement of chromosomes in mitosis

有丝分裂中染色体的非自主运动

阅读:11
作者:Elina Vladimirou, Nunu Mchedlishvili, Ivana Gasic, Jonathan W Armond, Catarina P Samora, Patrick Meraldi, Andrew D McAinsh

Abstract

Kinetochores are the central force-generating machines that move chromosomes during cell division. It is generally assumed that kinetochores move in an autonomous manner. However, we reveal here that movements of neighboring sister-kinetochore pairs in metaphase are correlated in a distance-dependent manner. This correlation increases in the absence of kinetochore oscillations or stable end-on attachments. This suggests that periodic movements of bioriented chromosomes limit the correlated motion of nonsisters. Computer simulations show that these correlated movements can occur when elastic crosslinks are placed between the K-fibers of oscillating kinetochores. Strikingly, inhibition of the microtubule crosslinking motor kinesin-5 Eg5 leads to an increase in nonsister correlation and impairs periodic oscillations. These phenotypes are partially rescued by codepletion of the kinesin-12 Kif15, demonstrating a function for kinesin-5 and kinesin-12 motors in driving chromosome movements, possibly as part of a crosslinking structure that correlates the movements of nonsister kinetochores.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。