Homeostatic Milieu Induces Production of Deoxyribonuclease 1-like 3 from Myeloid Cells

稳态环境诱导髓系细胞产生脱氧核糖核酸酶 1-样 3

阅读:9
作者:Shoichiro Inokuchi, Hiroki Mitoma, Shotaro Kawano, Shota Nakano, Masahiro Ayano, Yasutaka Kimoto, Mitsuteru Akahoshi, Yojiro Arinobu, Hiroshi Tsukamoto, Koichi Akashi, Takahiko Horiuchi, Hiroaki Niiro

Abstract

DNase 1-like 3 (DNase1L3), which belongs to DNase1 family, was originally identified as one of apoptosis- and necrosis-related endonucleases that fragmentate intranucleosomal DNA. A loss-of-function mutation has been reported in murine models of systemic lupus erythematosus (SLE) and in familial SLE patients. These reports suggest DNase1L3 plays an important role in the prevention of developing SLE; however, expression and function of DNase1L3 in human immune systems have been largely unclarified. As previous reports showed DNase1L3 is expressed in hematopoietic organs, we first analyzed expression levels of DNase1L3 in each subset of human peripheral blood cells by quantitative real-time PCR. Plasmacytoid dendritic cells showed the highest expression levels of DNase1L3 mRNA among peripheral blood cells. IL-4 enhanced DNase1L3 expression in monocytes, monocyte-derived dendritic cells, and monocyte-derived macrophages (MDMs), but not in T cells, B cells, or plasmacytoid dendritic cells. Together with IL-4, all-trans retinoic acid and apoptotic cells efficiently upregulated expression of DNalse1L3 in MDMs. As a result of intracellular signaling analysis, Jak1-IRS2-ERK/PI3K pathway was essential for IL-4-induced DNase1L3 expression. IL-4-treated monocyte-derived dendritic cells and MDMs secreted active DNase1L3 protein that could degrade liposome-DNA complexes, which were resistant to DNase1. Our results indicate DNase1L3 is secreted by innate immune cells and may play a critical role in the tissue homeostasis and on prevention of developing autoimmunity by degrading self-DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。